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FFT method and how to calculate DFTs in Excel (branko@pecar-uk.com) 

 
Let’s make a few quick statements first. FFT stands for Fast Fourier Transforms and it is an algorithm, 
or a method, of calculating very quickly and efficiently a set of Discrete Fourier Transforms (DFT). So 
do not confuse the two. One is the method and the other one is the result. Needless to say, we could 
be interested in continuous Fourier transforms too, but this is not the topic of this tutorial. What 
else do we need to know about FFT? Not much, except that using this method you can calculate only 
2 to the power of n (2n) of these transforms. This means that the number of these discrete Fourier 
transforms (DFTs) that you can calculate using the FFT method is 2, 4, 8, 16, 32, 64, 128, 256, ..., 
4096, etc. In fact, Excel will allow a max of 4096 DFTs. Sometimes we use the word “coefficients” 
instead of DFTs, so do not be confused. 

OK, what will the final result look like and how do we achieve this? Here is a graph (Fig. 1) of average 
monthly temperatures in Sheffield, South Yorkshire in degrees C between January 1977 and August 
2019 (courtesy of: http://www.sheffieldweather.co.uk/Averages/MONTHLYAIRAVERAGE.htm). The 
graph is shown in a time domain and it shows years on the x-axis and average temperatures on the 
y-axis. It consists of 512 temperature readings. 

 
Fig. 1 

The very same variable, i.e. the average monthly temperatures in Sheffield from Jan 1977 until Aug 
2019 can be presented in the frequency domain. The graph below (Fig. 2) is the one we calculated. 
The x-axis now shows the frequencies and the y-axis shows the spectral densities for every 
frequency. We will explain how to calculate all of this, as well as what all the expressions mean. 

 
Fig. 2 
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We will now show a formula that is used to calculate the DFTs, but you do not have to worry about 
it. Excel will do it for you. Here it is, just for illustration purposes: 

𝐹𝑘 = ∑ 𝑥𝑛 𝑒
−𝑖2𝜋𝑛𝑘

𝑁

𝑁−1

𝑛=0

                                                                                            (1)   

 
Where: 
 
Fk = Discrete Fourier transform coefficients (DFT) expressed as complex numbers 
xn =  Observations (i.e. the function or the time series) 
k= Number of complex coefficients 
N = Number of observations 
n = Number of samples n = 0 to N-1 (same as k) 
i = imaginary number 

This formula expresses discrete Fourier transforms as complex numbers. There are other ways to 
achieve the same, but we will stick to this one, because Excel relies on it. The only thing that you 
need to remember is that the result of this formula will be a series of numbers and that this series 
will be 2, 4, 8, 16, ..., 4096 long. The only other piece of information important is that these 
coefficients are complex, which means that they consist of a real number and an imaginary number, 
something like this: 5-6i, or 2.145+0.43i. If you do not understand this, get some quick lessons from 
the web, though you do not have to do anything with these numbers in this tutorial. 

OK, just a few more points before we start the calculations. If, for example, we have 128 data points 
(like 128 temperature readings), we can calculate up to 128 DFTs, but not more. We could calculate 
less (64 or 32 for example), but that’s not the point here. So, remember that the number of 
observations will determine how many DFT coefficients you can calculate. 

What if you have only 123 observations and not 128 and you really want 128 DFTs? As we said 
above, technically the max number of DFTs that you can calculate is 64. This means that you take 
only the last 64 observations and calculate 64 DFTs for them and ignore all the earlier observations. 
However, there is a workaround and it is called zero padding. In this case, just add 5 zeros below 
your 123 observations so that your times series consists now of 128 observations. You will still get 
the correct values of the DFTs even if your time series is shorter than the number of DFTs you need. 

And just one last point. If you have 128 observations (or any other number), you do not actually 
need to calculate all 128 DFTs to get the correct picture. You can calculate only half of them. Exactly 
at half point, which is called the folding frequency, or Nyquist limit, the DFTs begin to show the 
mirror image of the first half. This means that it is sufficient to calculate only half the number of the 
coefficients. Fig. 3 illustrates the point. Once you passed the middle point, you do not get any new 
information, just the repeat of the first half. 

So, what are we going to do in this tutorial? We will first calculate DFTs using an Excel add-in for 
Fourier Analysis. After that, we will calculate the amplitudes from every coefficient, i.e. discrete 
Fourier transform. The amplitudes will then be used to calculate the power coefficients. And finally, 
we will calculate the frequency bins and present our results in a graph. That’s it. Let’s start. 



3 
 

 
Fig. 3 

1. Calculate DFTs using Excel Fourier Analysis from Data Analysis in the Data tab 

First of all, I will assume that you have installed the Excel Data Analysis add-in. If you did, you will 
find it under the Data tab. Click on the Data Analysis option, which will open a dialogue box to select 
the Fourier Analysis option (see Fig. 4): 

  
Fig. 4 
 
The option presented in the next box is simple (see Fig. 5). Just select the time series (in our case 
cells C5:C516) and where you want the DFTs to be printed out, which in our case is cell D5. 

 

 
Fig. 5 
 

Once you clicked OK, Excel will immediately calculate all 512 discrete Fourier transforms, or as we 
call them, coefficients. Fig. 6 below shows the results. 
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Fig. 6 

Column A are the years from 1977 until 2019, column B are the months, column C are the average 
temperatures and column D are newly calculated DFTs. Note that in Fig. 6 we are showing only the 
first 14 observations and the last 14 observations. 

Also, take a look at the first DFT beyond the zero-frequency (we’ll explain this shortly) in cell D6. 
What you see is a complex number that reads =-111.24+95.16i. The second one in D7 is 
=39.93+25.79i, etc. Complex numbers are in fact two-dimensional numbers that reside in a space 
defined by the real axis and the imaginary axis. Effectively, every number is a vector. This means that 
it has a direction and magnitude. How do we calculate a magnitude of a vector? Well, it is calculated 
as the modulus of the complex number.  

|𝑧| = √𝑎2 + 𝑏2        (2) 
 
Every complex coefficient in column D will consist of the real part Ak and the imaginary part Bk. This 
means that using equation (2) the magnitude for every complex coefficient can be calculated as Mk: 
       

𝑀𝑘 = |𝐹𝑘| = √𝐴𝑘
2 + 𝐵𝑘

2                   (3) 
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2. Calculate the amplitudes from every DFT 

If the values in column D are DFTs, whose symbol is Fk, then in column E we can calculate 
magnitudes for every coefficient. However, because we are calculating the magnitudes for every 
frequency (to be explained shortly), we will not use the word magnitude, but we’ll call them the 
amplitudes. The formula for amplitudes of a DFT is: 

For k=0  𝐴𝑘 =
1

𝑁
|𝐹𝑘| =

𝑀𝑘

𝑁
                (4)  

 

For k>0  𝐴𝑘 =
√2

𝑁
|𝐹𝑘| =

𝑀𝑘√2

𝑁
                (5) 

 
Fig. 7 shows how to calculate the amplitudes from the DFTs. 
 

 
Fig. 7 
 
We divide the first complex number in D6 with the number of observations (512 in our case) and we 
get the zero-frequency amplitude. If we multiply the second one in D7 by the square root of 2, and 
all the subsequent ones, and divide each of them by the number of observations, we get the 
amplitudes for all other DFTs. 
 
Two points to clarify. The first one is why do we multiply all non-zero frequency amplitudes with the 
square root of 2? Because we only need half of them up to the folding frequency, or Nyquist limit, as 
we explained earlier. This is the formula to get the single-sided spectrum (remember, the full 
spectrum consists of two mirror images of coefficients). 
 
The second question is why are we using an Excel function called =IMABS()? Because this is a 
dedicated function for complex numbers. Look at the equations (2) or (3) above and you will see that 
the modulus of a complex number is an absolute square root value of the squared sum of the two 
components. This is exactly what =IMABS() function does.  
 

3. Calculate the power coefficients 

Now imagine something. Think about our time series of 512 observations as a function. If we convert 
this function from the time domain into the frequency domain, which is what we are doing, then 
once we completed this transformation, the frequency domain will show us how much every 
frequency contributes towards the total energy (or power) of this function. Another way to say this 
is to ask yourself: what is the individual power of every frequency when compared to the total 
energy of the function? In other words: how is the total power distributed per frequency, or what is 
the power spectrum? 
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OK, this means that from our amplitudes we need to calculate the power coefficients. The formula 
for this is: 

For k=0  𝑃𝑆𝐷0(𝐹𝑘) =
𝐴𝑘

2

2
                 (6)  

 

For k>0  𝑃𝑆𝐷𝑥(𝐹𝑘) = 𝐴𝑘
2                 (7) 

 
Again, we treat the power for the zero-frequency differently from the rest of the spectrum. In Excel, 
the calculations are executed as in Fig. 8: 
 

 
Fig. 8 
 
The power spectrum is in column G. As you look further down this column (not shown here, but 
check the spreadsheet), you will realise that we stopped calculating power coefficients in cell G261. 
Take a look at neighbouring cell D261. You will notice that column D consists of complex DFT 
numbers until we hit D261. This is the first coefficient that is not a complex number, but it is a real 
number. As it happens, this is the point exactly halfway through the number of observations and it 
will be the point where the Nyquist limit applies, or as we call it, a folding frequency. Let’s see now 
how to calculate the frequencies that are associated with the power coefficients we just calculated. 
 

4. Calculate the frequency bins 

The power coefficients we just calculated need to be attributed to specific frequencies. How are 
these frequencies calculated? First of all, we need to start with how many observations we have (N) 
and what is the total time over which we collected these observations (T). From there, we can 

calculate the time increments (t) and the sampling rate (fs). Once we have this, we can calculate 

the folding frequency (ff) and the frequency increments (f). These frequency increments will tell us 
the width of every frequency bin.  

Before we show these trivial calculations in Excel, let’s see a series of very simple equations that 
explain mutual inter-relationships between all these parameters we just mentioned. The parameters 
are: 

N = Total number of discrete data points taken  

t = Time between data points (time increments) 
T = Total sampling time 
fs = Sampling rate (how often do we take samples) 
ff = Folding frequency or Nyquist limit 

f = Frequency increments that will create frequency bins 
 

We’ll start with the time increments t in which the time series is recorded as:  
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∆𝑡 =
𝑇

𝑁
=

1

𝑓𝑠
         (8) 

 
From there, we can extract any of the variables: 
 

𝑇 = 𝑁Δ𝑡 =
𝑁

𝑓𝑠
         (9) 

 

𝑁 =
𝑇

Δ𝑡
= 𝑓𝑠𝑇         (10) 

 

   𝑓𝑠 =
1

∆𝑡
=

𝑁

𝑇
        (11) 

 
The folding frequency (Nyquist limit frequency) is defined as: 
 

𝑓𝑓 =
𝑓𝑠

2
=

1

2∆𝑡
=

𝑁

2𝑇
        (12) 

 

The frequency increments f, which will be used to create frequency bins are defined as: 
 

∆𝑓 =
1

𝑇
=

1

𝑁∆𝑡
=

𝑓𝑠

𝑁
=

2𝑓𝑓

𝑁
      (13) 

 
As we already know, according to the Nyquist criterion, the maximum number of DFTs that should be 
calculated should not exceed fs/2. This means that there is a number k, which we multiply with the 

number of frequency increments f, i.e. kf, which should equal fs/2.  
 

We define kf as: 
 

𝑘∆𝑓 =
𝑓𝑠

2
           (14)  

 
From (14), we can extract k as: 
 

𝑘 =
𝑓𝑠

2∆𝑓
=

𝑁

𝑇

2
1

𝑇

=
𝑁

2
           (15) 

 
From there we can provide alternative equations for (12) as: 
 

𝑓𝑓 =
𝑓𝑠

2
=

𝑁

2
∆𝑓 = 𝑘Δ𝑓          (16) 

A lot of equations, but the calccalculations are very simple. Let’s see what we have in our 
spreadsheet. 
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Fig. 9 

The cells show: 

K1= COUNTA(C5:C516)=512, N=Number of observations 
K2=K1=512,   k=Number of DFT coefficients    
K3=K1=512,   T=Total time (number of months in this case)  

K4=K3/K1=1.00,   t=Time increments in months    
K5=1/K4=1.00,   fs=Sampling rate per months   
K6=K5/2=0.5,   ff=Folding frequency    

K7=(2*K6)/K1=0.0020,  f=Frequency increments per month   

We just used some of the equations (8) to (16) to do these simple calculations. The others are there 
if you need them. 

OK, now we have f, we can calculate the frequency bins. In other words, the total spectrum of 
frequencies is in our case divided by 512 “bins”. The null frequency will be zero and every other 

frequency will be incremented by the value of f. What we mean is: 
 

f=0.0020 f0 = 0 

  f1 = f0 + f = 0 + 0.0020 = 0.0020 

  f2 = f1 + f = 0.0020 + 0.0020 = 0.0039 

  f3 = f3 + f = 0.0039 + 0.0020 = 0.0059 
  . 
  . 

  F257 = f256 + f = 0.4980 + 0.0020 = 0.500 

Let’s show this in Excel (Fig. 10) and point out a few key elements. Column I contains the frequency 
bins calculated as above and we stop in cell I261, which is the point where our frequency bin reaches 
the value of 0.5. This is specified according to cell K6, i.e. the folding frequency. 

Here is one very important point. If you take a look at column G where we calculated the power 
coefficients, you will see that, excluding the power coefficient for the zero frequency, the largest 
power coefficient is in cell G48 (the value is 14.0794). This power coefficient is associated with the 
frequency of 0.0840 (cell I48 in Fig. 10). If you take the inverse value of this number 
(=1/0.0840=11.91), you get 11.91. If we round it up, we get the number 12. Effectively we have 
shown that our time series has a seasonality of 12 months, which is what we knew from the 
beginning and why we picked this time series for demonstration in the first place. 
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Why did we get 11.91 and not 12? Because we only have 512 frequency bins, i.e. not very fine 
resolution. If we increased the number of DFTs and the associated frequencies to 1024 or 2018, or 
even 4096, we would get closer to this whole number of 12. 

 
Fig. 10 

What if we wanted to express all these parameters not in terms of months but as fractions of a year? 
Well, we did this too. The figure below (Fig. 11) shows the calculations. Note that now we are 
expressing everything in years, rather than months. For example, T is now 42.67 (cell W3) which 

means that we collected data over 42.67 years. The time increment is now t=0.0833 of a year (cell 
W4), which means that we collect data at the sampling rate of fs=12 per year (cell W5). This gives us 

the folding frequency of ff=6 (cell W6) and the frequency increments of f=0.0234 (cell W7). 

Although we changed the units, nothing else has changed. If we look again at the frequency 
associated with the largest power in column G (Fig. 10), we still see the highest power coefficient in 
cell G48, corresponding to the yearly frequency in U48. The value of this frequency is 1.0078 (Fig. 
11). Again, the inverse value of this number is 0.992248, which is close to 1. This means that our 
cycle repeats itself every year, which we know, but here we have proof of this. It works regardless of 
what units of measure you take, as long as you pay attention to it. 
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Fig. 11 

We could have used examples with Hz, which are the favourite measuring units of the engineering 
community. They are as easy to handle as other units, as long as you remember that 1 Hz means one 
sample per second. Let’s take a trivial example with only 8 observations measured over 2 seconds to 
explain the principle: 

N = 8 observations 
T = 2 sec  

t = T/N = 2/8 = 0.25 sec 

fs = 1/t = 1/0.25 = 4 Hz 
ff = fs/2 = 4/2 = 2 Hz maximum frequency value for calculating power coefficients 

f = 1/T = 1/2 = 0.5 a frequency increment in Hz 
 
So, the frequency increments will be 0.5 Hz, starting from zero, and will go to a max value of 2 Hz.  

OK, so let’s show one more time our final result, which is the plot of the power spectrum, expressed 
per frequency, for our average monthly temperature measures for Sheffield over 42.67 years, or 512 
months from January 1977 until August 2019 (Fig. 12). 

Note that to create a graph as in Fig. 12 you need to put frequency bins in your spreadsheet in a 
column before the power coefficients. Then you use a scatter diagram to construct the graph, where 
the dots are connected by a line. This will give you the graph with frequencies on the x-axis and 
power coefficients on the y-axis. Also, always drop f0 and the associated power coefficient from this 
graph as it just distorts the picture. 
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Fig. 12 

We can see the power peaking just below 0.1, in fact at 0.084, which we know is (=1/0.084) 11.91 or 

12, i.e. the periodicity of this time series. This could have been shown not as a function of 
frequency, but as a function of a period, in which case we would call it a periodogram. 

One last cool thing. Imagine if we did not calculate the power coefficient for the zero frequency as 
the squared amplitude divided by 2. Let’s say we calculated it as all other power coefficients, i.e. as 
just the squared value of the amplitudes. See cell G5 in Fig. 13 which we deliberately changed. 

 
Fig. 13 

If, after that, we sum up all these power coefficients (up to the folding frequency), then their sum is 
117.91, as per cell G2 in Fig. 13. Take a look at cell G1 in Fig. 13. You will see the same number, but it 
is calculated as the normalised squared sum of all actual temperature readings in column C. In other 
words, take the square value of every temperature reading, add them all up and divide by the total 
number of them. You get the same number, i.e. 117.91. This shows you that in both the time-space 
as well as the frequency space, the observations and their power coefficients are intrinsically 
connected. The power that the function (a time series) contains is the same whether presented in 
the time domain or in the frequency domain. Well, there is a much more elegant mathematical 
explanation for this called Parseval’s theorem, but it goes beyond this tutorial. 

And finally, sometimes you will see the phrase “spectral density estimates”, which most of the time 
is nothing but the power spectrum, as per our Fig. 12. In some cases, this means correcting the 
power coefficient values for the bandwidth capacity, but this is a typical engineering application and 
if you are not operating in these units, you can treat the two expressions interchangeably. 

You might think that it is pointless discovering the periodicity of 12, especially as we already know 
that the monthly temperatures will repeat themselves every 12 months. However, very often you 
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will be unsure of the periodicity in advance, and the frequency analysis using discrete Fourier 
transforms will be of great help. Now you know how to do it.  

Periodicity is not always so obvious, and it can hide more complex patterns that only the harmonics 
from the power spectrum analysis will reveal. It remains to be said that Fourier transforms are the 
inverse function of the autocorrelation coefficients from the autocovariance function, so it does not 
matter whether you prefer the time or the frequency domain, the results will always yield the same 
conclusion. 

This concludes our tutorial on how to calculate the DFTs, amplitudes, power spectrum and frequency 
bins using built-in Excel functions. 

 

Branko Pecar 
Autumn 2019 

 


