FFT method and how to calculate DFTs in Excel (branko@pecar-uk.com)

Let’s make a few quick statements first. FFT stands for Fast Fourier Transforms and it is an algorithm,
or a method, of calculating very quickly and efficiently a set of Discrete Fourier Transforms (DFT). So
do not confuse the two. One is the method and the other one is the result. Needless to say, we could
be interested in continuous Fourier transforms too, but this is not the topic of this tutorial. What
else do we need to know about FFT? Not much, except that using this method you can calculate only
2 to the power of n (2") of these transforms. This means that the number of these discrete Fourier
transforms (DFTs) that you can calculate using the FFT method is 2, 4, 8, 16, 32, 64, 128, 256, ...,
4096, etc. In fact, Excel will allow a max of 4096 DFTs. Sometimes we use the word “coefficients”
instead of DFTSs, so do not be confused.

OK, what will the final result look like and how do we achieve this? Here is a graph (Fig. 1) of average
monthly temperatures in Sheffield, South Yorkshire in degrees C between January 1977 and August
2019 (courtesy of: http://www.sheffieldweather.co.uk/Averages/MONTHLYAIRAVERAGE.htm). The
graph is shown in a time domain and it shows years on the x-axis and average temperatures on the
y-axis. It consists of 512 temperature readings.
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The very same variable, i.e. the average monthly temperatures in Sheffield from Jan 1977 until Aug
2019 can be presented in the frequency domain. The graph below (Fig. 2) is the one we calculated.
The x-axis now shows the frequencies and the y-axis shows the spectral densities for every
frequency. We will explain how to calculate all of this, as well as what all the expressions mean.
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We will now show a formula that is used to calculate the DFTs, but you do not have to worry about
it. Excel will do it for you. Here it is, just for illustration purposes:
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Where:

F« = Discrete Fourier transform coefficients (DFT) expressed as complex numbers
Xn = Observations (i.e. the function or the time series)

k= Number of complex coefficients

N = Number of observations

n = Number of samples n =0 to N-1 (same as k)

i = imaginary number

This formula expresses discrete Fourier transforms as complex numbers. There are other ways to
achieve the same, but we will stick to this one, because Excel relies on it. The only thing that you
need to remember is that the result of this formula will be a series of numbers and that this series
will be 2, 4, 8, 16, ..., 4096 long. The only other piece of information important is that these
coefficients are complex, which means that they consist of a real number and an imaginary number,
something like this: 5-6i, or 2.145+0.43i. If you do not understand this, get some quick lessons from
the web, though you do not have to do anything with these numbers in this tutorial.

OK, just a few more points before we start the calculations. If, for example, we have 128 data points
(like 128 temperature readings), we can calculate up to 128 DFTs, but not more. We could calculate
less (64 or 32 for example), but that’s not the point here. So, remember that the number of
observations will determine how many DFT coefficients you can calculate.

What if you have only 123 observations and not 128 and you really want 128 DFTs? As we said
above, technically the max number of DFTs that you can calculate is 64. This means that you take
only the last 64 observations and calculate 64 DFTs for them and ignore all the earlier observations.
However, there is a workaround and it is called zero padding. In this case, just add 5 zeros below
your 123 observations so that your times series consists now of 128 observations. You will still get
the correct values of the DFTs even if your time series is shorter than the number of DFTs you need.

And just one last point. If you have 128 observations (or any other number), you do not actually
need to calculate all 128 DFTs to get the correct picture. You can calculate only half of them. Exactly
at half point, which is called the folding frequency, or Nyquist limit, the DFTs begin to show the
mirror image of the first half. This means that it is sufficient to calculate only half the number of the
coefficients. Fig. 3 illustrates the point. Once you passed the middle point, you do not get any new
information, just the repeat of the first half.

So, what are we going to do in this tutorial? We will first calculate DFTs using an Excel add-in for
Fourier Analysis. After that, we will calculate the amplitudes from every coefficient, i.e. discrete
Fourier transform. The amplitudes will then be used to calculate the power coefficients. And finally,
we will calculate the frequency bins and present our results in a graph. That’s it. Let’s start.
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1. Calculate DFTs using Excel Fourier Analysis from Data Analysis in the Data tab

First of all, I will assume that you have installed the Excel Data Analysis add-in. If you did, you will

find it under the Data tab. Click on the Data Analysis option, which will open a dialogue box to select
the Fourier Analysis option (see Fig. 4):
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The option presented in the next box is simple (see Fig. 5). Just select the time series (in our case
cells C5:C516) and where you want the DFTs to be printed out, which in our case is cell D5.
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Once you clicked OK, Excel will immediately calculate all 512 discrete Fourier transforms, or as we
call them, coefficients. Fig. 6 below shows the results.



A B C D
1 |Average monthly temperature in deg Cin Sheffield, South Yorkshire
2 |http:/fwww.sheffieldweather.co.uk/Averages/MONTHLYAIRAVERAGE.htm

3

4 |Year Month  Avg Temp DFTs

5 1977 JAN 2.1 3009.2

6 FEB 3.6 -111.241337850715+95.165738425201i
7 MAR 5.4 359.9293780611367+25.7866843135007i
8 APR 6.6 41.0666825545464+61.5204529307675i1
9 MAY 10.0  -20.98910236813806+22.5046021188411i
10 JUN 12.2 -66.2938048939285+31.9307554472146i
11 JUuL 15.6  55.2885118878217+54.2852348161773i
12 AUG 15.3  41.2455604802370+17.95001165429541
13 SEP 12.8 -9.956556096142417-17.28648702794361
14 OCT 10.7  -14.2853446173828+15.0904501335005i
15 NOV 5.7 A40.6442948071919+17.4436301282536i0
16 DEC 5.3 14.8762916388729+46.50733022326961
17 1978  JAN 2.9 -0.146423312767434-5.4084 28478623011
18 FEB 1.8 -20.3990282634228+6.17084033053154i
303 JUuL 159.5 24,725332044646+16.81738343335594i
204 AUG 17.0 -20.3990282634227-6.17084033053167i
305 SEP 13.4 -0.146423312767407+5.468428478622611
306 oCT 10.3 14.8762516388724-46.5078302232706i
307 NOV 7.4 A40.6442948071917-17.4436301282535i1
308 DEC 6.4 -14.2853446173828-15.0904501335003i
309 2019 JAN 4.4 -9.95655696142408+17.2804870279437i
310 FEB 6.9 41.2455604802377-17.95601165942959i1
311 MAR 7.5 55.2885118878214-54.2852348161777i
312 APR 8.9 -66.293804893929-31.9307554472144j
313 MAY 11.5 -20.9891023681387-22.9046621188411i
34 JUN 14,1 41.006082554546-61.2204529307081i
315 JUL 17.8 39.9293780611365-25.7866843139011i
316 AUG 17.1 -111.241337850716-95.1657984252006i
Fig. 6

Column A are the years from 1977 until 2019, column B are the months, column C are the average
temperatures and column D are newly calculated DFTs. Note that in Fig. 6 we are showing only the
first 14 observations and the last 14 observations.

Also, take a look at the first DFT beyond the zero-frequency (we’ll explain this shortly) in cell D6.
What you see is a complex number that reads =-111.24+95.16i. The second one in D7 is
=39.93+25.79i, etc. Complex numbers are in fact two-dimensional numbers that reside in a space
defined by the real axis and the imaginary axis. Effectively, every number is a vector. This means that
it has a direction and magnitude. How do we calculate a magnitude of a vector? Well, it is calculated
as the modulus of the complex number.

|z| = Va? + b? (2)

Every complex coefficient in column D will consist of the real part Ac and the imaginary part Bk. This
means that using equation (2) the magnitude for every complex coefficient can be calculated as M:

My = |F| = /Ai + By, (3)



2. Calculate the amplitudes from every DFT

If the values in column D are DFTs, whose symbol is Fi, then in column E we can calculate
magnitudes for every coefficient. However, because we are calculating the magnitudes for every
frequency (to be explained shortly), we will not use the word magnitude, but we’ll call them the
amplitudes. The formula for amplitudes of a DFT is:

For k=0 Ak = IFkl = — (4)

For k>0 Ay =%|Fk| =%§ (5)

Fig. 7 shows how to calculate the amplitudes from the DFTs.

A B C D E F
1 |Average monthly temperature in deg C in Sheffield, South Yorkshire
2 |httpyfwww.sheffieldweather.co.uk/Averages/MONTHLYAIRAVERAGE.htm

4 |Year Month  Avg Temp DFTs Amplitudes

5 1977  JAN 2.1 '5009.2 9.7336 =IMABS(D5)/5K51

6 FEB 3.6 -111.241337890715+95.165798425201i 0.4044 =SQRT(2)*IMABS({D6)/$KS1

7 MAR 5.4 39.9293780611367+25.7866843139007i 0.1313 =SQRT(2)*IMABS({D7)/5K51

8 APR 6.6 41.06660825545464+61.52045293076751 0.2043 =SQRT(2)*IMABS(DS8)/SKS1

g MAY 10.0  -20.9891023681386+22.9046621188411i 0.0858 =SQRT(2)*IMABS(D9)/5KS1
Fig. 7

We divide the first complex number in D6 with the number of observations (512 in our case) and we
get the zero-frequency amplitude. If we multiply the second one in D7 by the square root of 2, and
all the subsequent ones, and divide each of them by the number of observations, we get the
amplitudes for all other DFTs.

Two points to clarify. The first one is why do we multiply all non-zero frequency amplitudes with the
square root of 2? Because we only need half of them up to the folding frequency, or Nyquist limit, as
we explained earlier. This is the formula to get the single-sided spectrum (remember, the full
spectrum consists of two mirror images of coefficients).

The second question is why are we using an Excel function called =IMABS()? Because this is a
dedicated function for complex numbers. Look at the equations (2) or (3) above and you will see that
the modulus of a complex number is an absolute square root value of the squared sum of the two
components. This is exactly what =IMABS() function does.

3. Calculate the power coefficients

Now imagine something. Think about our time series of 512 observations as a function. If we convert
this function from the time domain into the frequency domain, which is what we are doing, then
once we completed this transformation, the frequency domain will show us how much every
frequency contributes towards the total energy (or power) of this function. Another way to say this
is to ask yourself: what is the individual power of every frequency when compared to the total
energy of the function? In other words: how is the total power distributed per frequency, or what is
the power spectrum?



OK, this means that from our amplitudes we need to calculate the power coefficients. The formula
for this is:

2
For k=0 PSDy(F,) = AZ—" (6)
For k>0 PSD,(F,) = A% (7)

Again, we treat the power for the zero-frequency differently from the rest of the spectrum. In Excel,
the calculations are executed as in Fig. 8:

A B C D E F G H
1 |Average monthly temperature in deg C in Sheffield, South Yorkshire
2 |http://www.sheffieldweather.co.uk/Averages/MONTHLYAIRAVERAGE.htm
3
4 |Year Month  Avg Temp DFTs Amplitudes Power
5 1977  JAN 21 5009.2 9.7836 =IMABS(D5)/$KS1 47.8594 =(E5%2)/2
6 FEB 3.6 -111.241337890715+95.165798425201i 0.4044 =SQRT(2)*IMABS({D6)/5$KS1 0.1635 =E6~2
7 MAR 5.4 39.9293780611367+25.7866843139007i 0.1313 =SQRT(2)*IMABS(D7)/SKS1 0.0172 =E7"2
8 APR 6.6 41.0666825545464+61.5204529307675i 0.2043 =SQRT(2)*IMABS(D8)/$KS1 0.0417 =E8"2
g MAY 10.0 -20.9891023681386+22.9046621188411i 0.0858 =SQRT(2)*IMABS(D9)/SKS1 0.0074 =E9"2

The power spectrum is in column G. As you look further down this column (not shown here, but
check the spreadsheet), you will realise that we stopped calculating power coefficients in cell G261.
Take a look at neighbouring cell D261. You will notice that column D consists of complex DFT
numbers until we hit D261. This is the first coefficient that is not a complex number, but it is a real
number. As it happens, this is the point exactly halfway through the number of observations and it
will be the point where the Nyquist limit applies, or as we call it, a folding frequency. Let’s see now
how to calculate the frequencies that are associated with the power coefficients we just calculated.

4. Calculate the frequency bins

The power coefficients we just calculated need to be attributed to specific frequencies. How are
these frequencies calculated? First of all, we need to start with how many observations we have (N)
and what is the total time over which we collected these observations (T). From there, we can
calculate the time increments (At) and the sampling rate (fs). Once we have this, we can calculate
the folding frequency (fr) and the frequency increments (Af). These frequency increments will tell us
the width of every frequency bin.

Before we show these trivial calculations in Excel, let’s see a series of very simple equations that
explain mutual inter-relationships between all these parameters we just mentioned. The parameters
are:

N = Total number of discrete data points taken

At = Time between data points (time increments)

T = Total sampling time

f. = Sampling rate (how often do we take samples)

fr = Folding frequency or Nyquist limit

Af = Frequency increments that will create frequency bins

We'll start with the time increments At in which the time series is recorded as:



=— (8)

From there, we can extract any of the variables:

— _N
T—NAt—fs (9)
T
N=_=fT (10)
1 N
fs=E=; (112)

ffzéz_z_ (12)

_1_ 1 _f_ 2%y
Af_T_NAt_N_N (13)

As we already know, according to the Nyquist criterion, the maximum number of DFTs that should be
calculated should not exceed fs/2. This means that there is a number k, which we multiply with the
number of frequency increments Af, i.e. kAf, which should equal f/2.

We define kAf as:

kAf =5 (14)

s
2

From (14), we can extract k as:

fi_ 7 _N
=Js _ T _N
T2af T 2T 2 (15)
T
From there we can provide alternative equations for (12) as:
—Is _Nar_
fy =5 =50f = kif (16)

A lot of equations, but the calccalculations are very simple. Let’s see what we have in our
spreadsheet.



K L M M 0 P Q R 5

1 512 N=Number of observations =COUNTA(C5:C516)
2 512 k=Mumber of DFT coefficients (k=1,2,..,N-1} --= Has to be 2" =K1
3 512 T=Total time (number of months in this case) =K1
4 1.00 At=Time increments in months =K3/K1
5 1.00 f.=Sampling rate per months =1/K4
& 0.5 f=Folding frequency =K5/2
7 0.0020 Af=Frequency increments per month =[2*K6) /K1
Fig. 9

The cells show:

K1= COUNTA(C5:C516)=512,  N=Number of observations

K2=K1=512, k=Number of DFT coefficients

K3=K1=512, T=Total time (number of months in this case)
K4=K3/K1=1.00, At=Time increments in months
K5=1/K4=1.00, f=Sampling rate per months

K6=K5/2=0.5, fi=Folding frequency

K7=(2*K6)/K1=0.0020, Af=Frequency increments per month

We just used some of the equations (8) to (16) to do these simple calculations. The others are there
if you need them.

OK, now we have Af, we can calculate the frequency bins. In other words, the total spectrum of
frequencies is in our case divided by 512 “bins”. The null frequency will be zero and every other
frequency will be incremented by the value of Af. What we mean is:

Af=0.0020 fo=0
fi=fo+ Af =0+ 0.0020 = 0.0020
f,=f1+ Af=0.0020 + 0.0020 = 0.0039
f3=f3+ Af =0.0039 + 0.0020 = 0.0059

Fas57 = fa56+ Af = 0.4980 + 0.0020 = 0.500

Let’s show this in Excel (Fig. 10) and point out a few key elements. Column | contains the frequency
bins calculated as above and we stop in cell 1261, which is the point where our frequency bin reaches
the value of 0.5. This is specified according to cell K6, i.e. the folding frequency.

Here is one very important point. If you take a look at column G where we calculated the power
coefficients, you will see that, excluding the power coefficient for the zero frequency, the largest
power coefficient is in cell G48 (the value is 14.0794). This power coefficient is associated with the
frequency of 0.0840 (cell 148 in Fig. 10). If you take the inverse value of this number
(=1/0.0840=11.91), you get 11.91. If we round it up, we get the number 12. Effectively we have
shown that our time series has a seasonality of 12 months, which is what we knew from the
beginning and why we picked this time series for demonstration in the first place.



Why did we get 11.91 and not 12? Because we only have 512 frequency bins, i.e. not very fine
resolution. If we increased the number of DFTs and the associated frequencies to 1024 or 2018, or
even 4096, we would get closer to this whole number of 12.

G H J K L

1 512 M=MNumbs
2 512 k=MNumbe
3 512 T=Total ti
4 | Power Frequencies 1.00 At=Time i
5 [ 478504 ={E5~2)/2 0 1.00 £.=5ampli
6 | 01635 =E6°2 | 0.0020 =I5+5K57 0.5 f=Foldin
7 [ 00172 =E72 i 0.0039 =16+5K57 0.0020 Af=Frequ
8 [ 00417 =E8"2 i 0.0058 =I7+5K57

9 [ 0.0074 =E9°2 i 0.0078 =18+SK5T

10| 0.0413 0.0098

11| 0.0458 0.0117

12| 00154 0.0137

13| 0.0030 0.0156

14 | 0.0033 0.0176

15| 0.0149 0.0195

16 | 0.0182 0.0215

17| 0.0002 0.0234

18 | 0.0035 0.0254

19 | 0.0068 0.0273

41| 00314 0.0703

42 | 00290 0.0723

43| 00027 0.0742

44| 00977 0.0762

45 | 02574 0.0781

46 | 04873 0.0801

47| 30578 0.0820

48 | 14.0794 0.0840 11.8070 =1/148
49 | 10233 0.085%

50 | 02827 0.0879

51| 0.1582 0.0898
Fig. 10

What if we wanted to express all these parameters not in terms of months but as fractions of a year?
Well, we did this too. The figure below (Fig. 11) shows the calculations. Note that now we are
expressing everything in years, rather than months. For example, T is now 42.67 (cell W3) which
means that we collected data over 42.67 years. The time increment is now At=0.0833 of a year (cell
WA4), which means that we collect data at the sampling rate of f.=12 per year (cell W5). This gives us
the folding frequency of f=6 (cell W6) and the frequency increments of Af=0.0234 (cell W7).

Although we changed the units, nothing else has changed. If we look again at the frequency
associated with the largest power in column G (Fig. 10), we still see the highest power coefficient in
cell G48, corresponding to the yearly frequency in U48. The value of this frequency is 1.0078 (Fig.
11). Again, the inverse value of this number is 0.992248, which is close to 1. This means that our
cycle repeats itself every year, which we know, but here we have proof of this. It works regardless of
what units of measure you take, as long as you pay attention to it.



u Vv W X Y z AR AB AC

1 512 N=Number of observations
2 512 k=Number of DFT coefficients (k=1,2,..,N-1) --> Has ta be 2"
3 42.67 T=Total time (number of years in this case) =W1i/12
4 |Frequencies 0.0833 At=time increments in years =W3/W1i
5 0 12 f.=sampling rate per year =1/w4a
& 0.0234 =U5+5W57 6 f=Folding frequency =W5/2
7 0.0469 =UG+5WS7 0.0234 Af=Frequency increments per year ={2*w6)/ W1
8 0.0703 =U7+5W57
g 0.0938 =US+5W57
10 0.1172
11 0.1406
12 0.1641
13 0.1875
14 0.2109
13 0.2344
16 0.2578
17 0.2813
18 0.3047
15 0.3281
41 0.8438
42 0.8672
43 0.8906
44 0.9141
45 0.9375
46 0.9609
47 0.9844
48 1.0078 0.992248 =1/U48
Fig. 11

We could have used examples with Hz, which are the favourite measuring units of the engineering
community. They are as easy to handle as other units, as long as you remember that 1 Hz means one
sample per second. Let’s take a trivial example with only 8 observations measured over 2 seconds to
explain the principle:

N = 8 observations

T=2sec

At=T/N=2/8=0.25 sec

fs=1/At=1/0.25=4 Hz

fr=1f/2 = 4/2 = 2 Hz maximum frequency value for calculating power coefficients
Af=1/T=1/2=0.5 a frequency increment in Hz

So, the frequency increments will be 0.5 Hz, starting from zero, and will go to a max value of 2 Hz.

0K, so let’s show one more time our final result, which is the plot of the power spectrum, expressed
per frequency, for our average monthly temperature measures for Sheffield over 42.67 years, or 512
months from January 1977 until August 2019 (Fig. 12).

Note that to create a graph as in Fig. 12 you need to put frequency bins in your spreadsheet in a
column before the power coefficients. Then you use a scatter diagram to construct the graph, where
the dots are connected by a line. This will give you the graph with frequencies on the x-axis and
power coefficients on the y-axis. Also, always drop fo and the associated power coefficient from this
graph as it just distorts the picture.
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Power spectrum for average monthly temp in
deg C in Sheffield Jan 1977-Aug 2019

We can see the power peaking just below 0.1, in fact at 0.084, which we know is (=1/0.084) 11.91 or
~12, i.e. the periodicity of this time series. This could have been shown not as a function of
frequency, but as a function of a period, in which case we would call it a periodogram.

One last cool thing. Imagine if we did not calculate the power coefficient for the zero frequency as
the squared amplitude divided by 2. Let’s say we calculated it as all other power coefficients, i.e. as
just the squared value of the amplitudes. See cell G5 in Fig. 13 which we deliberately changed.

A B C D E F G H | ]
1 |Average monthly temperature in deg C in Sheffield, South Yorkshire 117.9135 =SUMPRODUCT(C5:C516,C5:C516)/COUNT(C5:C516)
2 |http:/ fwww.sheffieldweather.co.uk/Averages [MONTHLYAIRAVERAGE. htm 117.9158 =5UM([G5:G261)
3
4 |Year Month  Avg Temg DFTs Amplitudes Power Frequencies
5 1577 JAN 21 s0092 9.7836 =IMABS(D5)/5K51 " 957187 =E52 0
6 FEB 3.6 |-111.241337890715+95.165798425201i 0.4044 =50RT(2)*IMABS(D6)/SKS1 " 0.1635 =E6°2 " 0.0020 =15+5K57
7 MAR 54 35.9293780611367+25.78668431390071 0.1313 =SQRT(2)*IMABS(D7)/5K51 " 00172 =E7"2 r 0.0039 =16+5K57
8 AFR 6.6  41.0666825545464+61.5204529307675i 0.2043 =S0RT(2)*IMABS(D8)/5K51 " 00417 =E8"2 r 0.0059 =17+5K57
MAY 10.0  -20.9891023681386+22 9046621188411 0.0858 =SART(2)*IMABS({DS)/$k31 | 0.0074 =Eg°2 r 0.0078 =18+$KS7

B -]

If, after that, we sum up all these power coefficients (up to the folding frequency), then their sum is
117.91, as per cell G2 in Fig. 13. Take a look at cell G1 in Fig. 13. You will see the same number, but it
is calculated as the normalised squared sum of all actual temperature readings in column C. In other
words, take the square value of every temperature reading, add them all up and divide by the total
number of them. You get the same number, i.e. 117.91. This shows you that in both the time-space
as well as the frequency space, the observations and their power coefficients are intrinsically
connected. The power that the function (a time series) contains is the same whether presented in
the time domain or in the frequency domain. Well, there is a much more elegant mathematical
explanation for this called Parseval’s theorem, but it goes beyond this tutorial.

And finally, sometimes you will see the phrase “spectral density estimates”, which most of the time
is nothing but the power spectrum, as per our Fig. 12. In some cases, this means correcting the
power coefficient values for the bandwidth capacity, but this is a typical engineering application and
if you are not operating in these units, you can treat the two expressions interchangeably.

You might think that it is pointless discovering the periodicity of 12, especially as we already know
that the monthly temperatures will repeat themselves every 12 months. However, very often you
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will be unsure of the periodicity in advance, and the frequency analysis using discrete Fourier
transforms will be of great help. Now you know how to do it.

Periodicity is not always so obvious, and it can hide more complex patterns that only the harmonics
from the power spectrum analysis will reveal. It remains to be said that Fourier transforms are the
inverse function of the autocorrelation coefficients from the autocovariance function, so it does not
matter whether you prefer the time or the frequency domain, the results will always yield the same
conclusion.

This concludes our tutorial on how to calculate the DFTs, amplitudes, power spectrum and frequency
bins using built-in Excel functions.

Branko Pecar
Autumn 2019
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